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Hidden Measurements, Automorphisms, and
Decompositions in Context-Dependent
Components
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We investigate in which way the Hilbert space automorphisms can be implemented
on the level of Aerts’ hidden measurement representations for measurements on
physical entities. Inspired by this, we propose a definition for a `decomposition
in context-dependent components’ in order to push the property structure of a
physical entity on the level of the hidden measurements. We apply this definition
within the framework of quantum mechanics and we prove the existence of such
a decomposition.

1. INTRODUCTION

Recently, the search for classical representations of quantum structures

has known a revival, due to some new results within three different approaches

to the foundations of quantum mechanics: in Aerts (1986, 1994) and Coecke

(1995, 1996a) within the Brussels±Geneva approach (Jauch, Piron, Aerts,
. . .), and in Beltrametti and Bugajski (1996), Singer and Stulpe (1992), and

Bush et al. (1993) within the statistical (Mackey, Holevo, Prugovecki, Ali,

. . .) and/or convex approach (Neumann, Ludwig, Hellwig, Mielnik, . . .). In

all these representations, the main key to classical representations consists

in considering every quantum measurement as a collection of classical ones
equipped with a probability measure. A first `abstract’ step in this direction

was made by Gudder (1970). Unfortunately, the search for classical represen-

tations still guided by the `hidden-variable’ -idea forced Gudder into an `enor-

mously large’ construction in which most of the structure of the entity got

lost (i.e., there is no explicit reference on the level of the hidden variables
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to the lattice structure of the entity). A first explicit model for all quantum

entities subjected to measurements with a finite number of outcomes was

proposed by Aerts (1986). Aerts considered the quantum state as an as
complete a representation of the elements of reality of the entity under study

as possible [i.e., he considered `state’ in the Piron sense of Aerts (1982) and

Piron (1976)] and interprets the specific probability structures that appear in

quantum mechanics as due to a lack of knowledge on the precise measurement

that is actually performed. He expressed this idea in the following way:

x With each real measurement e there corresponds a collection of

deterministic measurements e l , l P L , and these deterministic mea-

surements are called `hidden measurements’ in analogy with the

`hidden variables.’

x When a measurement e is performed on an entity in a pure state p,

then one of the hidden measurements e l takes place. The probability
finds its origin in the lack of knowledge about which one of the

hidden measurements effectively takes place.

As is shown in Aerts (1986) and Coecke et al. (1996), this approach is

not in contradiction with the no-go theorems about hidden variables [all

inspired by the von Neumann (1955) proof] since the hidden variables in the
hidden measurement approach are variables of the measurement environment,

which means that they are contextual by definition.2 It is important to remark

that in the hidden measurement approach:

x The state p is not dependent on the parameter l and the selection of

one l is also independent of the state of the system.

This restriction (and some others) distinguishes between a general contextual

hidden variable model and a hidden measurement model. Aerts’ approach

has been extended beyond the borders of a pure quantum framework (Aerts,

1994) and this has led to a general axiomatics for context dependence and

a classification of all possible hidden measurement representations (Coecke,

1995, 1996a, b). This axiomatics will be briefly discussed in Section 2 of
this paper. From this classification it follows that in general, there is no

feedback from the `hidden measurement’ axiomatics for context dependence

to the general axiomatics for physical entities, i.e., the hidden measurement

hypothesis has no implications on the level of the lattice description of

physical entities (Coecke, 1996a, b). In this paper we proceed more or less

2 Another model system in which we encounter such an introduction of parameters representative
for such a kind of lack of knowledge situation is the Gisin±Piron (1981) model. However,
this aspect of the model was not the main topic of their paper. Gisin and Piron mainly wanted
to show that it is possible to find a dynamical equation for a `state transition’ during a
measurement, i.e., a collapse without a mixture.
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along this path of thinking in the sense that we also try to introduce an

additional parameter l in order to decompose a probability measure defined

on the property lattice of a physical entity into {0,1}-valued maps, but now
by requiring as general a `faithfulness’ to the property lattice as possible

(what we mean by this is explained in Section 3). More precisely, we introduce

a decomposition of probability measures assigned to measurements of an

entity in a pure state into {0,1}-valued maps that satisfy certain axioms, and

we prove the existence of such a decomposition for the specific case of a

Hilbert space quantum framework.

2. ASSUMPTIONS OF THE HIDDEN MEASUREMENT
AXIOMATICS FOR CONTEXT DEPENDENCE

In this section we briefly summarize the axiomatics for context depen-

dence introduced in Coecke (1996a, b), i.e., we consider a situation with a

lack of knowledge on the interaction of the entity with its measurement

context. For the moment, we do not pose any further structural assumptions,

except for the following four, which enable us to construct a framework to

study these situations:

x The entity is in a (pure) state which is the complete representation

of all its properties. The collection of all states is denoted as S .
x There exists a set of possible descriptions ( 5 `relevant’ parameters)

for the measurement context during the measurement (i.e., a kind of

`states of the measurement context’ ), denoted as L .

x The result of a measurement is completely determined by the initial

conditions: p P S and l P L .

x There exists a statistical description m L : @( L ) ® [0,1], with @( L )
a s -field of subsets of L , for the relative frequency of occurrence

of l P L in a measurement.

2.1. Mathematical Implementation of Minimal Axioms for Context
Dependence

Let us consider a general measurement e. For a fixed l P L , the

measurement process is strictly classical; therefore for every hidden measure-
ment e l (i.e., the measurement e for a fixed value of l ) there exists a strictly

classical observable w l : S ® Oe , where Oe is the set of possible outcomes
of the measurement. We can represent the `unknown but relevant information’

for the measurement process as a couple consisting of a set of strictly classical

observables F L 5 { w l : S ® Oe | l P L } and a probability measure m L

defined on these observables. For more details on this definition of a hidden
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measurement representation we refer to Coecke (1996a). For every possible

initial state p P S , a measurement e is characterized by a probability measure

Pp,e: @(Oe) ® [0,1] (@(Oe) is a s -field of subsets of Oe), and thus we
can define

P S , e: S 3 @(Oe) ® [0, 1]: ( p, B) j Pp, e(B) (1)

Every hidden measurement e l corresponds to a (deterministic) {0,1}-valued
probability measure for every p P S :

Pp, l (B) 5 1B( w l ( p)) (2)

where 1B: Oe ® {0, 1} is the indicator of B, i.e., " x P B: 1B(x) 5 1 and

" x P Oe \B: 1B(x) 5 0. It is easy to see that the existence of a hidden

measurement representation corresponds to a decomposition represented in

the following diagram:

S 3 @(Oe) ®
P S , e

[0, 1]

D L o pm L

@( L )

(3)

where D L : S 3 @(Oe) ® @( L ), if it exists, is defined by

D L ( p, B) 5 { l P L | w l ( p) P B} (4)

and thus we have

Pp, e(B) 5 m L ( D L ( p, B)) 5 m L ({ l | 1B( w l ( p)) 5 1}) 5 m L ({ l | Pp, l (B) 5 1})

Thus, for all p P S the probability measure Pp,e is decomposed into {0,1}-

valued probability measures Pp, l according to a weight given by the probability

measure m L . A theorem on the existence of such a hidden measurement

representation for finite-dimensional quantum mechanics was given in Aerts
(1982). A generalization of this theorem to more general `finite-dimensional’

entities (i.e., with other probability descriptions than quantum probabilities)

can be found in Aerts (1994). The general proof for the existence of a hidden

measurement representation for general models for physical measurements

can be found in Coecke (1995). Coecke (1996a) proved that there always

exists a hidden measurement representation with L 5 [0, 1] and in Coecke
(1996b) we identified and classified all possible hidden measurement repre-

sentations. In Section 3 of this paper we will try to take the property structure

of the entity into account. First we show how the automorphisms of Hilbert

space can be implemented within the axiomatics for context dependence.



Hidden Measurements, Automorphisms, Decompositions 315

2.2. Hidden Measurements and Automorphisms of the Hilbert
Space Structure

At the end of the previous section, we mentioned some proofs on the

existence of at least one hidden measurement representation for general

models for physical measurements. In this section we go one step further, in
the sense that for the case of entities described in n-dimensional Hilbert

spaces, a hidden measurement representation for only one measurement e0

[which always exists, as is shown in Aerts (1986)] induces one for every

other measurement with respect to the automorphisms of the Hilbert space.

Proposition 1. Let ( F L , m L ) define a hidden measurement representation

for a measurement on a quantum entity with states represented in a n-

dimensional Hilbert space *n. The automorphisms of *n induce a hidden

measurement representation for every quantum measurement on this entity.

Proof. Let % consist of all quantum measurements on this entity. A

measurement e P % is represented by a self-adjoint operator He: *n ® *n ,
and due to the spectral theorem, we can represent e by n eigenvectors pe,1,

. . ., pe,n and n corresponding eigenvalues oe,1, . . . , oe,n. Clearly we can

represent the different possible outcomes oe,1, . . . , oe,n of the measurement

by their respective eigenstates pe,1, . . . , pe,n and thus Oe > {pe,1, . . . , pe,n}.

Consider a given measurement e0 (with H0 as self-adjoint operator and p0,1,
. . . , p0,n as eigenvectors) for which there exist a hidden measurement

representation

H F L ,0 5 { w 0, l : S ® {p0,1, . . . , p0, n} | l P L }

m L ,0: @( L ) ® [0, 1]
(5)

which satisfies (3) and thus characterizes this hidden measurement representa-
tion. For every e P % let Ue be the unitary transformation defined by " i: pe,i 5
Ue( p0,i). We can define a representation in the following way:

H F L , e 5 { w e, l : S ® {pe,1, . . . , pe, n}: p j Ue + w 0, l + U 2 1
e ( p) | l P L }

m L , e 5 m L ,0

(6)

since Ue + H0 + U 2 1
e 5 He if the outcomes of e and e0 are equal (which is

the case since we abstracted them). n

Thus, the actions `decomposing according to (3)’ and `transforming the
state space under a unitary map’ commute. In fact, (6) also imposes an

additional assumption on the representation of (5): the representation should

be invariant under unitary transformations that preserve e0 up to a permutation

of the outcomes. Let %0 be all measurements obtained through a permutation
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of the outcomes of e0. If we replace the representation of (5) by [ F L ,e is

defined by (6)]

H ø e P %0 F L , e

m L 3 %0: @( L ) 3 3(%0) ® [0, 1]: (A, B) j m L ,0(A) ? m n(B)
(7)

where 3(%0) is the set of all subsets of %0 and where m n: 3(%0) ® [0,1] is

the probability measure defined by " e P %0: m n({e}) 5 1/n! (n! is the number

of elements in %0), this additional condition is clearly fulfilled. We remark

that the set L is replaced by L 3 %0.

3. CLASSICAL REPRESENTATIONS OF ENTITIES DESCRIBED
BY PROPERTY LATTICES

As remarked in Section 2.1, a hidden measurement representation can

be seen as a decomposition of a collection of probability measures in

{0, 1}-valued maps (in fact, {0, 1}-valued probability measures). We also
already mentioned that there is no feedback from the `hidden measurement’

axiomatics for context dependence to the general axiomatics for physical

entities. In this section we will try to introduce an additional parameter l in

order to decompose a probability measure defined on the property lattice of

a physical entity into {0,1}-valued maps, but now by pushing a `faithfulness’

as general as possible to the property lattice. A procedure to push the lattice
structure into this kind of decomposition can be obtained by going back to

the attempts for hidden variable theories in this direction.3

Although we formally succeed in this attempt, it is not at all clear if

we are able to preserve the spirit of the hidden measurement ideas in the

sense formulated by Aerts (see the Introduction). Possibly, a somewhat less

mechanistic interpretation will be required to interpret the results of this
paper. In order to emphasize this potential spiritual difference between Aerts’

hidden measurements e l and the {0,1}-valued maps that we obtain in this

paper, we feel obliged to express this within the denotation, and to call

them `context dependent components’ instead of hidden measurements.4 The

precise significance of the obtained decompositions has already been studied
and will appear in forthcoming papers (Coecke and Moore, 1998, n.d.).

3 A more detailed comparison of the hidden measurement approach and hidden variable
approaches can be found in Coecke et al. (1996).

4 In fact, the distinction between `measurement’ and `entity’ becomes less sharp as is the case
in the hidden measurement approach. This makes it too difficult to assign the components l
as a variable of the measurement. Therefore we will not denote them by `e’ equipped with
an index, since this `e’ refers to a measurement. Instead, we denote a context-dependent
component by the variables on which it depends, written between brackets.
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3.1. Verification of the Hidden Variable Conditions

As an example we consider the Jauch and Piron (1963) improvement

of the von Neumann (1955) theorem. Let + be the property lattice of a

physical entity. Two properties a and b in + are compatible (denoted a %

b) if the sublattice generated by {a, a8, b, b8} is distributive (a8 and b8 are
the orthocomplements of a and b). A state p (i.e., an atom of the property

lattice) is represented by the unique Gleason quantum probability v p ? + ª
[0, 1] given by the square modulus Hilbert space in-product (Gleason, 1957).

Jauch and Piron (1963) show that v p fulfills

5
v p(0¤) 5 0, v p(I ) 5 1

a % b Þ v p(a) 1 v p(b) 5 v p(a ` b) 1 v p(a ~ b)

v p(a) 5 v p(b) 5 1 Þ v p(a ` b) 5 1

(8)

Definition 1. A theory is said to admit hidden variables if we can add

extra variables L p to every state such that there exist maps ( p, l ): + ®
{0,1} and a probability measure m p: @( L p) ® [0,1] [@( L p) is a s -field of

subsets of L p] such that

" p P S , " a P +, $ L p: v p(a) 5 # L p

( p, l )(a) d m p( l ) (9)

and such that all ( p, l ) fulfill (8).

In the hidden measurement approach we can do the following: we relate

to every property a a measurement ea , i.e., an ideal test of the first kind of
the property a [for a definition of `ideal’ and `of the first kind’ we refer to

Piron (1976)], which itself corresponds to a collection of `states of the

measurement context’ L a and a probability measure m a: @( L a) ® [0,1].

This gives

" p P S , " a P +, $ L a: v p(a) 5 # L a

( p, l )(a) d m a( l ) (10)

Moreover, for the specific case of quantum mechanics it is possible to find

hidden measurement representations such that L and m do not depend on

the properties [see Aerts (1986) and proposition 1], and thus (10) coincides

with (9). As a consequence, it seems that at first sight we have a contradiction

since there exist hidden measurement representations for quantum mechanics
that do satisfy (9). This conflicts with the no-go theorems. As we will show

now, (8) is not fulfilled for the maps ( p, l ) in the hidden measurement case.

To prove this it suffices to consider a two-dimensional Hilbert space. Since

this two-dimensional situation can easily be embedded in a higher dimensional

Hilbert space, the same is valid for every dimension.
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Proposition 2. If (6) is satisfied for ep and ep8,Ð respectively, tests for

the properties p and p8Ð and (10) is satisfied, then (8) cannot be satisfied.

Proof. Let U be a unitary transformation that preserves (1/ ! 2)( p 1 p8)
and exchanges p and p8. If we have a decomposition for p and thus also for

the probabilities of ep , we also have one for the probabilities of ep8 through
U, and thus also for p8. Due to (6) we have ((1/ ! 2)( p 1 p8), l )( p) 5
((1/ ! 2)( p 1 p8), l ) ( p8). Thus, the sum ((1/ ! 2)( p 1 p8), l ) ( p) 1
((1/ ! 2)( p 1 p8), l ) ( p8) is either 0 or 2, where ((1/ ! 2)( p 1 p8), l ) ( p Ú
p8) 5 1 and ((1/ ! 2)( p 1 p8), l ) ( p Ù p8) 5 0, which means that (8) cannot

be satisfied.

3.2. Context-Dependent Components

It follows from the previous section that in our decomposition ( p, l )

does not fulfill additivity on mutual orthogonal properties. The assumptions

by which we will replace this additivity assumption (which has always been

taken for granted as an axiom for physical states) seem acceptable and

definitely very natural, although they are incompatible with the additivity.

The kind of construction that we obtain in this way will be called a `decompo-
sition in context-dependent components’ . A condition which definitely has

to be satisfied in such a decomposition is

( p, l )(a) P {0, 1} (11)

since we demand a deterministic dependence on the initial conditions p and
l [which corresponds with the dispersion-free requirement in Jauch and Piron

(1963) and von Neumann (1955) or the restriction of the range of ( p, l ) to

{0,1} in the previous section]. The origin of the implication relation for the

properties [i.e., the partial order relation of the lattice; see, Aerts (1982),

Jauch (1968), or Piron (1976)] insinuates order preservation5: consider two
properties a and b and their respective tests ea and eb; a , b Û an answer

`yes’ for ea implies an answer `yes’ for eb; as a consequence, it is natural to

require the same for the `hidden tests’ , and thus, following the analogy with

the construction in the previous section, also for the components ( p, l ). Thus

we have

a , b Þ ( p, l )(a) # ( p, l )(b) (12)

Clearly, (12) is the implementation of the property lattice on the level of the

decomposition. Let F be the collection of automorphisms of +. In analogy

5 This can also easily be seen in a state space representation of the property lattice where the
properties are represented as a closure structure on the state space and the implication is an
inclusion [for more details on this representation see Aerts. (1994) and Valckenborgh (1996)].
We do not present the argument within this state space representation in this paper since this
would require the introduction of too many additional formal tools.
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with the construction in Section 2.2, we also demand for every decomposition

in context-dependent components that it respects the symmetries of +, repre-

sented within this automorphism group. Thus, for all f P F

" a P +, " p P S : ( f ( p), l )( f (a)) 5 ( p, l )(a) (13)

This imposes the following condition on ( p, l ):

" f P Fp, " a P +, " p P S : ( p, l )( f (a)) 5 ( p, l )(a) (14)

where Fp is the stabilizer of p in F :

fp 5 { f P F | f ( p) 5 p} (15)

Definition 2. Let v p: + ª [0, 1] be a measure which is additive on
mutual orthogonal states, and that takes the value one in the atom p. We call

a decomposition for p in context-dependent components any family {( p, l )} l

of {0,1}-valued measures defined on + such that

" a P +: v p(a) 5 # L

( p, l )(a) d m ( l ) (16)

such that (11), (12), and (14) are fulfilled.

Once we have such a decomposition for p we have a decomposition for

every q for which there exists an automorphism f such that f ( p) 5 q; for

this decomposition induced by f we have the same probability measure m
and (q, l )(a) 5 ( p, l )( f 2 1(a)). We show now that such a decomposition

exists for the quantum case.

Theorem 1. Let + be the property lattice of a quantum entity, i.e., + is

isomorphic with the lattice of all projectors on a Hilbert space *. Then for

v p: + ª [0, 1] there exists a decomposition in context-dependent components.

Proof. Define L 5 [0, 1] and m : @( L ) ª [0, 1] as the Lebesque measure,

i.e., " l P [0, 1]: m ([0, l ]) 5 l . For all a P + and for every state p, define

( p, l )(a) 5 1 if v p(a) $ l and ( p, l )(a) 5 0 if v p(a) , l . Now we have

to verify (16). We find

# L

( p, l )(a) d m ( l ) 5 m ({ l | ( p, l )(a) 5 1})

5 m ({ l | v p(a) $ l })

5 m ([0, v p(a)]) 5 v p(a)
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By the definition of ( p, l ), (11) is fulfilled. We also have order preservation

since, due to the additivity on mutual orthogonal states, we have a , b Þ
v p(a) # v p(b) Þ ( p, l )(a) # ( p, l )(b). Since f P Fp preserves the Hilbert
in-product and f (p) 5 p we have v p( f (a)) 5 v p(a) and thus ( p, l )( f (a)) 5
1 Û v p( f (a)) $ l Û v p(a) $ l Û ( p, l )(a) 5 1 and analogously,

( p, l )( f (a)) 5 0 Û ( p, l )(a) 5 0 which completes the proof. n

This specific property of the existence of a decomposition in context-

dependent components has led to a characterization of a specific kind of map

called `atomically generated maps,’ studied by Coecke and Moore (1998).

Much more can be said about this kind of map and in particular about the

general existence and uniqueness in the case of non-quantum property lattices.
Moreover, one can also show that these decompositions in context-dependent

components are in fact the key tool in order to construct a physically motivated

mathematical framework for imperfect experimental procedures. We are pre-

paring a paper on this aspect (Coecke and Moore (n.d.)).

ACKNOWLEDGMENTS

We thank Prof. D. Aerts and Dr. D. J. Moore for discussing this paper,

which has been a motivation for further research on the obtained results. F.

V. is Research Assistant and B. C., a Post-Doctoral Researcher at the Fund

for Scientific Research. We thank a referee for pointing out some aspects

in this paper which were not sufficiently clear, and for indicating some

possible improvements.

REFERENCES

Aerts, D. (1982). Foundations of Physics, 12, 1131.

Aerts, D. (1986). Journal of Mathematical Physics, 27, 202.

Aerts, D. (1994). Foundations of Physics, 24, 1227.

Beltrametti, E., and Bugajski, S. (1996). Journal of Physics A, 29, 247.

Bush, P., Hellwig, K. E., and Stulpe, W. (1993). International Journal of Theoretical Physics,

32, 399.

Coecke, B. (1995). Foundations of Physics Letters, 8, 437.

Coecke, B. (1996a). Helvetica Physica Acta, 69, 442.

Coecke, B. (1996b). Helvetica Physica Acta, 69, 462.

Coecke, B., and Moore, D. J. (1996). Decompositions of probability measures on complete

ortholattices in join preserving maps, Preprint, Free University of Brussels and UniversiteÂ

de GeneÁ ve.

Coecke, B., and Moore, D. J. (n.d.). A mathematical framework for imperfect experimental

procedures, in preparation.

Coecke, B., D’ Hooghe, B., and Valckenborgh, F. (1997). In New Developments on Fundamental

Problems in Quantum Physics, M. Ferrero and A. van der Merwe, eds., p. 103, Plenum

Press, New York.



Hidden Measurements, Automorphisms, Decompositions 321

Gisin, N., and Piron, C. (1981). Letters in Mathematical Physics, 5, 379.

Gleason, A. M. (1957). Journal of Mathematics and Mechanics, 6, 885.

Gudder, S. P. (1970). Journal of Mathematical Physics, 11, 431.

Jauch, J. M. (1968). Foundations of Quantum Mechanics , Addison-Wesley, Reading,

Massachusetts.

Jauch, J. M., and Piron, C. (1963). Helvetica Physica Acta, 36, 827.

Piron, C. (1976). Foundations of Quantum Physics, Benjamin, Reading, Massachusetts.

Singer, M., and Stulpe, W. (1992). Journal of Mathematical Physics, 33, 13.

Valckenborgh, F. (1996). Closure structures and the theorem of decomposition in classical

components, Tatra Mountains Mathematical Publications, 10, 75.

Von Neumann, J. (1955). The Mathematical Foundations of Quantum Mechanics , Princeton

University Press, Princeton, New Jersey.


